
WorklabNo Prize
for Pessimism{WorkLab

 / Five years that shook the business world
and sparked an AI-first future

vol. 1

< COLETTE STALLBAUMER

foreword by
Jaime Teevan

Worklab

/ Five years that shook the business world,
and sparked an AI-first future

vol. 1

< COLETTE STALLBAUMER

with a foreword from
Jaime Teevan

an imprint of Microsoft

No Prize
for Pessimism{
Human Agency in
a Digital World

 / Understand technology and
make it work for you

< MARCUS FONTOURA

WorklabNo Prize
for Pessimism{WorkLab

31, 27, 101, 1, –1, 0
27, 31, 101, 1, –1, 0
27, 31, 101, 1, –1, 0
27, 31, 1, 101, –1, 0
27, 31, 1, –1, 101, 0
27, 31, 1, –1, 0, 101

1st pass 3rd pass

2nd pass

4th pass

5th pass

27, 31, 1, –1, 0, 101
27, 31, 1, –1, 0, 101
27, 1, 31, –1, 0, 101
27, 1, –1, 31, 0, 101
27, 1, –1, 0, 31, 101

1, –1, 0, 27, 31, 101
–1, 1, 0, 27, 31, 101
–1, 0, 1, 27, 31, 101

–1, 0, 1, 27, 31, 101
–1, 0, 1, 27, 31, 101

27, 1, –1, 0, 31, 101
1, 27, –1, o, 31, 101
1, –1, 27, 0, 31, 101
1, –1, 0, 27, 31, 101

Figure 1. All the bubble sort passes required to sort the full
list. The comparisons in each step are highlighted. During
each pass, we “bubble” the next largest element towards the
end of the list. In this case we just need 5 passes to sort the
full list, as the list was partially sorted with -1 and 0 in the
correct relative order.

1   public int[] SortList()
2   {
3     var n = list.Length;
4
5     for (int i = 0; i < n - 1; i++)
6      for (int j = 0; j < n - i - 1; j++)
7       if (list[j] > list[j + 1])
8       {
9        var tempVar = list[j];
10        list[j] = list[j + 1];
11        list[j + 1] = tempVar;
12       }
13
14   return list;
15   }

Figure 2. Bubble sort algorithm described in C#. The vari-
able j identifies the location in the list, also referred to as
the index, of the element we are comparing with its adja-
cent neighbor in index j +1. The value of the element in
index j in the list is list[j]. Similarly, list[j + 1] is the value
for index j + 1. The fragment in lines 9 to 11 swap the list
elements using variable tempVar as a temporary buffer. We
store the old value of list[j] in this temporary variable. Then,
we assign the value of list[j+1] to list[j]. If we hadn’t saved
list[j]’s value in the temporary variable, it would have been
lost after line 10. Finally, in line 11 we assign the old value
of list[j] to list[j + 1], effectively swapping the values. The
“for” instructions in lines 5 and 6 control how many times
we do the comparisons and swaps. We affectionately call
these instructions for loops.

Frequency (%) vs. amino acid in titin

Amino acid

0

2

4

6

8

10

Fr
eq

ue
nc

y
(%

)

E V K T P S L A G I D R N Y Q F C H W M

Frequency (%) vs. letter in English texts

Letter

15

10

Fr
eq

ue
nc

y
(%

)

5

0 E T A O I N S H R D L C U M W F G Y P B V K J X Q Z

Figure 3. Distribution of amino acids in titin proteins and
letters in English texts.

A

B

DC

Figure 4. Example of four pages, A, B, C, and D, with hyper-
links amongst them.

1  static int[] FindIntersection(int[] array1, int[] array2)
2  {
3    List<int> intersection = new List<int>();
4    int i = 0, j = 0;
5
6    while (i < array1.Length && j < array2.Length)
7    {
8         if (array1[i] < array2[j])
9         {
10           i++; // Move cursor in array1
11        }
12        else if (array1[i] > array2[j])
13        {
14           j++; // Move cursor in array2
15        }
16        else
17        {
18           // Found a common element
19           intersection.Add(array1[i]);
20           i++;
21           j++;
22        }
23     }
24     return intersection.ToArray();
25  }

Figure 5. Intersection algorithm described in C#. Variables i
and j are the indices of the two cursors for the lists in array1
and array2, respectively. The output is stored in variable inter-
section. Line 19 adds the match that we found, when array1[i]
is equal to array2[j], to the output list.

1

62 63 77 78 124 125 126 127 128
Core

VM

2 3 4 29 30 31 32 33 60 61

Figure 6. A possible allocation of VMs with one core, two
cores, 16 cores, and 48 cores. The last three cores, numbered
126, 127, and 128, are left idle.

VMs allocated Cores
used

Memory
used

Storage
used

option 1: size-1, size-1, size-2 4 6GB 100GB

option 2: size-1, size-1, size-4 10 20GB 260GB

option 3: size-2, size-4 10 18GB 240GB

Table 1. Three possible allocations for the four requested VMs.

Option 1 Option 2

size-2 VMsize-2 VM

size-2 VMsize-2 VM

size-2 VMsize-2 VM

size-2 VMsize-2 VM

size-2 VMsize-2 VM

Server 1 Server 2

Figure 7. Tradeoff between two possible allocation options.

Typical operating region
100%

50%

PO
W

ER
 U

SA
G

E

UTILIZATION

0%
10% 50% 100%

ENERGY PROPORTIONAL
SERVER

Figure 8. This figure is adapted from The Case for Energy-
Proportional Computing.15 It compares a typical, energy-effi-
cient server with a hypothetical energy proportional machine.
The server consumes about half of its power even when doing
very little work. At high utilization, it starts behaving more
efficiently in its power consumption.

SoC = number of direct reports
to a manager

Manager
IC

13%13% 85%85% 12%12% 16%16%

24%24% 29%29% 32%32% 21%21%

72%72% 80%80% 82%82% 81%81% 78%78% 69%69% 89%89% 86%86%

40%40% 37%37% 85%85% 41%41% 24%24%

20%20% 18%18%

12%12%

14%14%

Figure 9. Example of hierarchical organization with four layers.
The numbers inside the boxes represent the percentages VPW
per employee. VPW increases as we go down the hierarchy,
with ICs, in general, having much higher values than managers.

INDIVIDUAL
CONTRIBUTORS

FELLOW
DISTINGUISHED

PRINCIPAL
SENIOR STAFF

STAFF

VP
SENIOR DIRECTOR

DIRECTOR
MANAGER 2

MANAGER 1

SENIOR ENGINEER
ENGINEER 3
ENGINEER 2
ENGINEER 1

MANAGEMENT
LE

A
D

ER
SH

IP

LE
A

D
ER

SH
IP

Figure 10. Y-career ladder. The initial branches are IC-only.
The leadership tracks start at the base of the Y, with parallel
tracks for ICs and managers.

Duplicated platform teams
working independently

Uni�ed platform teams
working collaboratively

InfrastructureInfrastructure

Product SMBProduct SMB

DataData

PaymentsPayments

BankingBanking

FrontendFrontend

InfrastructureInfrastructure

Product MicroProduct Micro

DataData

PaymentsPayments

BankingBanking

FrontendFrontend

InfrastructureInfrastructure

CTOCTO

CTOCTO

DataData

PaymentsPayments

BankingBanking

FrontendFrontend

Figure 11. The organizational change at Stone transformed a
product-oriented structure into a platform-oriented structure.

lnvestment
in market

innovations
to combat
disruption

lnvestment
in productivity

innovations
to combat

deterioration

Optimized
organization

(high VPW and
low cost)

Optimized
organization

(high VPW and
low cost)

New products
(improved
revenue)

New products
(improved
revenue)

Figure 12. The virtuous cycle of innovation. Innovation in pro-
ductivity improves the bottom line while market innovations
improve the top line. Continued reinvestments of these gains
combat deterioration and disruption. By investing in innovation,
the company will attract better leaders, both managers and ICs,
who will further increase productivity and produce novel ideas.

Hat size

Crown
to cu�

Sleeve Length
from centre
back

Back LengthBack LengthBack Length

neck

Ches/bust

Waist
to knee
centre of knee

Waist

Inseam

Outseam

H
ei

gh
t

ankle

Bottom/
seat at
widest
point

waiwaisstbandtbandwaistband
Ri

se

Figure 13. A typical tuxedo measurement chart
downloaded from the web.

skyscraper

elephant

tent

ant

7 20

16

45

92

170

180 220

Figure 14. A few embeddings. E(word) is the embedding vec-
tor for “word.” In this example,
E(elephant) is (180, 92), E(skyscraper) is (220, 170), E(ant) is
(7, 16), and E(tent) is (20, 45).

1.7

9.74.4 36.7 –0.9

WORDS
D

IM
EN

SI
O

N
S

0.2 0.4 2.8

–8.7 this is cel [2, 3]
value of aardvark in the
verb dimension

Figure 15. Embedding matrix in which the columns represent
the embedding vectors for all words in the vocabulary. The size
of the matrix is 1000 × 100, as we have one thousand words
and one hundred dimensions.

–2–4

5

2

–4

3 5

Figure 16. Dot product examples. The dot product of (3, 5)
and (5, 2) is 3 × 5 + 5 × 2 = 25 (correlated, vectors in the same
direction). The dot product of (5, 2) and (-2, 5) is 5 × -2 + 2 ×
5 = 0 (unrelated, vectors are orthogonal). The dot product of
(5, 2) and (-4, -4) is 5 × -4 + 2 × -4 = -28 (opposing, vectors
are in opposing directions).

E(queen)

E(woman)

E(man)
E(king)

Figure 17. This is a 3D projection of the high-dimensional
space of embeddings. The difference between the embeddings
of “queen” and “king” is similar to the difference to the embed-
dings of “women” and “men.”

labeled “cat”
labelled “no cat”

1.0

1.0eyes

(b)(a)

y-intercept

slope

w
hi

sk
er

s
Figure 18(a). AI model to predict future growth of a service.
(b) AI model to classify videos as “cat” and “no cat” using two
simple features, the presence of whiskers and cat eyes.

Be factual. Provide results with reputable
sources. Please write succinctly.Directives

Next likely words
derived by
inferencing

Drew 6.7%
Barrymore 6.4%
the 2.1%
goddess 1.8%
...

Prompt

Output
so far

Who was the the actress in My Date With Drew?

The actress in My Date With Drew was

Figure 19. The inferencing algorithm produces a list of next
likely tokens that will be appended to the output, one by one,
until the full output is generated. After each token is selected,
we invoke a new round of inferencing, producing a new list of
next likely tokens.

position

pr
ob

ab
ili

ty

Figure 20. Sample wave function, which indicates the prob-
ability of the particle being at each position at a given time.

Criteria Classical digital
computer Quantum computer

Information
carrier bit qubit

Speed
picoseconds,
or 0.000001
microseconds

10s to 1000s of
microseconds

Error rate 10-15 10-6 now, aiming for
10-18 in a few years

Scale billions of bits per
chip

10s of qubits now,
aiming for thousands
in a few years

Table 2. Comparison of classical digital and quantum com-
puters. Take this with a grain of salt, since we still don’t have
a scalable quantum computer and these numbers may change
drastically as we make progress in their development.

q = x|0q = 1q = 0

SPIN DOWN SPIN UP

x

y

+ y|1

Figure 21. Qubits implementation using electron spins. Spin
down means qubit q is 0. Spin up means it is 1. Unlike classical
digital computers, qubits can be in a superposition state. In that
case, reading the qubit would return 0 with probability x2 and
1 with probability y2.

5

7

6

4

3

1

2

6

8

7

9

8

1

2

5

7

3

3

5

7

4

1

2

4

5

4

8

3

4

9

7

6

2

3

4

8

9

4

7

6

Figure 22. Sample sudoku board with 40
starting positions. We have 941 combina-
tions left.

|qfinal
|0

10

|q

|other dimensions

|qnew

1
–

2

Figure 23. This figure shows the first step of Grover’s algo-
rithm. We start with the uniform superposition state |q⟩.
Each step of the algorithm involves two vector reflections.
The first one reflects |q⟩ over the hyperplane formed by the
other dimensions, giving us |qnew⟩. The second reflection moves
|qnew⟩ over the original uniform superposition state. These two
reflections combined, move is an angle Θ closer to the final
qubit |010⟩. As Θ is approximately 1

6 in this example, after 6
steps will be aligned with |qfinal⟩.

Figure 24. Illustration of a search algorithm in a regular dig-
ital computer, which only has access to the cathetus, and in a
quantum computer, which can go through the diagonals. Being
hand-wavy, this is where the speedup from O(N) to O(N))
steps come from.

