-
Human Agency in

a Digital World
-

/ Understand technology and
make it work for you

< MARCUS FONTOURA

80802
BOOKS

an imprint of Microsoft

1st pass 3rd pass

31, 27, 101, 1, -1, O 27, 1, -1, 0O, 31, 101
27, 31, 101, 1 0 1, 27, -1, o, 31, 101
27, 31, 101, 1, -1, 0 1, -1, 27, 0O, 31, 101
27, 31, 1, 101, -1, O 1, -1, 0O, 27, 31, 101
27, 31, 1, -1, 101, 0
27, 31, 1, -1, 0O, 101 4th pass

1, -1, 0O 27, 31, 101
2nd pass -1, 1, 0, 27, 31, 101
-1, 0, 1, 27, 31, 101

27, 31, 1, -1, 0O, 101

27, 31, 1, -1, 0O, 101

27, 1, 31, -1, 0, 101 5th pass

27, 1, -1, 31, 0O, 101 -1, 0O, 1, 27, 31, 101
27, 1, -1, 0, 31, 101 -1, 0, 1, 27, 31, 101

Figure 1. All the bubble sort passes required to sort the full
list. The comparisons in each step are highlighted. During
each pass, we “bubble” the next largest element towards the
end of the list. In this case we just need 5 passes to sort the
full list, as the list was partially sorted with -1 and O in the
correct relative order.

1 public int[] SortList()

2 {

3 var n = list. Length;

4

5 for (inti=0;i<n-1;i++)
6 for (intj=0;j<n-i-1;j++)
7 if (list[j] > List[j + 1])

8 {

9 var temp Var = list[j];
10 list[j] = list[j + 1];

11 list[j + 1] = tempVar;
12 }

13

14 return list;

15 }

Figure 2. Bubble sort algorithm described in C#. The vari-
able 7 identifies the location in the list, also referred to as
the index, of the element we are comparing with its adja-
cent neighbor in index 7 +7. The value of the element in
index j in the list is /isz[j]. Similarly, Zist[j + 1] is the value
for index j + 1. The fragment in lines 9 to 11 swap the list
elements using variable tempVar as a temporary buffer. We
store the old value of /isz[j] in this temporary variable. Then,
we assign the value of /Zisz[j+1] to /list[j]. If we hadn’t saved
list[j[’s value in the temporary variable, it would have been
lost after line 10. Finally, in line 11 we assign the old value
of list[j] to list[j + 1], effectively swapping the values. The
‘for” instructions in lines 5 and 6 control how many times
we do the comparisons and swaps. We affectionately call
these instructions for loops.

Frequency (%) vs. amino acid in titin

10

Frequency (%)

EVKTPSLAGIDRNYQFCHWM

Amino acid

Frequency (%) vs. letter in English texts
15

Frequency (%)

0ETAOINSHRDLCUMWFGYPBVKJXQZ

Letter

Figure 3. Distribution of amino acids in titin proteins and
letters in English texts.

Figure 4. Example of four pages, 4, B, C, and D, with hyper-

links amongst them.

1 static int[] FindIntersection(int[] arrayl, int[] array2)
2 {

3 List<int> intersection = new List<int>();
4 inti=0,j=0;

5

6 while (i < arrayl.Length && j < array2.Length)
7 {

8 if (array1[i] < array2[j])

9 {

10 i++; // Move cursor in arrayl
11]

12 else if (arrayl[i] > array2[j])

13 {

14 j++; // Move cursor in array2
15 }

16 else

17 {

18 // Found a common element
19 intersection.Add(array1[i]);
20 i++;

21 j++s

22 }

23 }

24 return intersection. ToArray();

25 }

Figure 5. Intersection algorithm described in C#. Variables i
and j are the indices of the two cursors for the lists in arrayl
and array2, respectively. The output is stored in variable inzer-
section. Line 19 adds the match that we found, when array1[i]
is equal to array2[jj, to the output list.

mEEy

-

Figure 6. A possible allocation of VMs with one core, two

cores, 16 cores, and 48 cores. The last three cores, numbered
126,127, and 128, are left idle.

Cores Memory Storage
used used used

VMsallocated

option 1: size-1, size-1, size-2 4 6GB 100GB
option 2: size-1, size-1, size-4 10 20GB 260GB

option 3: size-2, size-4 10 18GB 240GB

Table 1. Three possible allocations for the four requested VM.

|

Option 1

&

Option 2@

size-2VM

size-2 VM

size-2VM

size-2VM

Server 1

Server 2

Figure 7. Tradeoff between two possible allocation options.

Typical operating region
100% """""""""" [.

POWER USAGE

UTILIZATION

Figure 8. This figure is adapted from The Case for Energy-
Proportional Computing.”® It compares a typical, energy-effi-
cient server with a hypothetical energy proportional machine.
The server consumes about half of its power even when doing
very little work. At high utilization, it starts behaving more
efficiently in its power consumption.

SoC = number of direct reports
to a manager

[0 Manager
—JIc

eoo | 78%

| 72%

| 80%

82%

81%

69% || 89% || 86% |ee®°®

Figure 9. Example of hierarchical organization with four layers.
The numbers inside the boxes represent the percentages VPW
per employee. VPW increases as we go down the hierarchy,
with ICs, in general, having much higher values than managers.

(" INDIVIDUAL MANAGEMENT |
CONTRIBUTORS
a a
I I
A FELLOW VP @
W < DISTINGUISHED SENIOR DIRECTOR (= &
< PRINCIPAL DIRECTOR <
= SENIOR STAFF MANAGER 2 =
STAFF MANAGER 1
- J

Figure 10. Y-career ladder. The initial branches are IC-only.
The leadership tracks start at the base of the Y, with parallel
tracks for ICs and managers.

(@[]

Product SMB Product Micro (@]0]
Infrastructure Infrastructure — Infrastructure
Data Data — Data
Payments Payments Q — Payments
Banking Banking — Banking
Frontend Frontend — Frontend

Duplicated platform teams
working independently

Unified platform teams
working collaboratively

Figure 11. The organizational change at Stone transformed a
product-oriented structure into a platform-oriented structure.

Optimized
organization

" (highVvPW and
low cost)
Investment Investment
in productivity in market
innovations innovations
to combat to combat
deterioration disruption
New products
(improved <
revenue)

Figure 12.The virtuous cycle of innovation. Innovation in pro-
ductivity improves the bottom line while market innovations
improve the top line. Continued reinvestments of these gains
combat deterioration and disruption. By investing in innovation,
the company will attract better leaders, both managers and ICs,
who will further increase productivity and produce novel ideas.

Sleeve Length
from centre
back

waistband

Height

Bottom/

seatat

widest

point
Waist
toknee
centre of knee

Figure 13. A typical tuxedo measurement chart
downloaded from the web.

Outseam

skyscraper
170
elephant
92
tent
/LY S— ,
16 [3247
7 20 180 220

Figure 14. A few embeddings. E(word) is the embedding vec-
tor for “word.” In this example,
E(elephant) is (180, 92), E(skyscraper) is (220, 170), E(ant) is
(7, 16), and E(tent) is (20, 45).

WORDS

2 04 28 o060 1.7

00 °

0

CZ> -8.7 «— thisis cel [2, 3]

7 value of aardvark in the

Z verb dimension

=

[a]
[4
[J
[]

44 36.7 -09 0060 97

Figure 15. Embedding matrix in which the columns represent
the embedding vectors for all words in the vocabulary. The size
of the matrix is 7000 x 100, as we have one thousand words
and one hundred dimensions.

.................

Figure 16. Dot product examples. The dot product of (3, 5)
and (5, 2)is 3 x 5+ 5 x 2 = 25 (correlated, vectors in the same
direction). The dot product of (5, 2) and (-2, 5) is 5 x -2 + 2 x
5 = 0 (unrelated, vectors are orthogonal). The dot product of
(5,2) and (-4, -4) is 5 x -4 + 2 x -4 = -28 (opposing, vectors
are in opposing directions).

E(woman)
E(queen)

E(man)
E(king)

Figure 17. This is a 3D projection of the high-dimensional
space of embeddings. The difference between the embeddings
of “queen”and “king”is similar to the difference to the embed-
dings of “women” and “men.”

a labeled“cat”
= labelled “no cat”

107777777 H

S 1

AA A 4 '

" =] A

— rS K

o] A 1

(b) -3 a :
= 1

; o O =] :

= 1

=} o A !

o o !

=] =} '

[T

y-intercept eyes 1.0

Figure 18(a). Al model to predict future growth of a service.
(b) Al model to classify videos as “cat” and “no cat” using two
simple features, the presence of whiskers and cat eyes.

Next likely words

.. derived by
L * Be factual. Provide results with reputable ¢ inferencing
Directives : . . :
- sources. Please write succinctly.
: Drew 6.7%
Barrymore 6.4%
the 2.1%

goddess 1.8%

Figure 19. The inferencing algorithm produces a list of next
likely tokens that will be appended to the output, one by one,
until the full output is generated. After each token is selected,
we invoke a new round of inferencing, producing a new list of
next likely tokens.

probability

position

Figure 20. Sample wave function, which indicates the prob-
ability of the particle being at each position at a given time.

Classical digital

Criteria TEio? Quantum computer
Infqrmanon bit il
carrier
picoseconds,
Speed or 0.000001 oL
. microseconds
microseconds
15 10" now, aiming for
e 10 10"in a few years
- . 10s of qubits now,
Scale billions of bits per aiming for thousands

g in a few years

Table 2. Comparison of classical digital and quantum com-
puters. Take this with a grain of salt, since we still don’t have
a scalable quantum computer and these numbers may change
drastically as we make progress in their development.

q=0 q=1 a=x|0) +y[1)

SPIN DOWN SPIN UP

Figure 21. Qubits implementation using electron spins. Spin
down means qubit ¢is 0. Spin up means it is 1. Unlike classical
digital computers, qubits can be in a superposition state. In that
case, reading the qubit would return 0 with probability x* and
1 with probability y”.

5 9 4

7 8|3 419

6 1 7 |3

4 6 2|5

3/ 8/5]|7/|2 6 4|9

1 7|4 8

2 1 4

3 4 8 |7

7 5|3 6

Figure 22. Sample sudoku board with 40
starting positions. We have 9 combina-
tions left.

|qﬁna|>

|010)
N

.
.
g . '

1 \ ’

|other dimensions) S
|qneW> “ -

Figure 23. This figure shows the first step of Grover’s algo-
rithm. We start with the uniform superposition state |q).
Each step of the algorithm involves two vector reflections.
The first one reflects |q) over the hyperplane formed by the
other dimensions, giving us |q,...>- The second reflection moves
|q,..,? Over the original uniform superposition state. These two
reflections combined, move is an angle ® closer to the final

qubit [010). As © is approximately - in this example, after NG
steps will be aligned with |qg, -

Figure 24. Illustration of a search algorithm in a regular dig-
ital computer, which only has access to the cathetus, and in a
quantum computer, which can go through the diagonals. Being
hand-wavy, this is where the speedup from O(N) to O(N)

steps come from.

